Exercise Sheet #7

Course Instructor: Ethan Ackelsberg Teaching Assistant: Felipe Hernández

- **P1.** Throughout this problem we denote λ as the Lebesgue measure on \mathbb{R} .
 - (a) Let A be a Lebesgue-measurable set on the real line such that $\lambda(A) > 0$. Show that the difference set $A A = \{x y \mid x, y \in A\}$ contains an open neighborhood of 0 in \mathbb{R} . **Hint:** Prove that for each $r \in (1/2, 1)$, there is an interval $(a, b) \subseteq \mathbb{R}$ such that $\lambda(A \cap (a, b))/(b a) \ge r$.
 - (b) Let (H, +) be a Lebegue measurable proper subgroup of $(\mathbb{R}, +)$. Show that $\lambda(H) = 0$.
- **P2.** (a) Show that the Dirac functional $\delta_0 \in \mathcal{M}[0,1]$ defined by $\delta_0(f) := f(0)$ is not of the form

$$\delta_0(f) = \int_0^1 f(t)g(t)dt \quad (f \in C[0,1])$$

for any $g \in C[0,1]$.

(b) Define $\psi: C[0,1] \to \mathbb{R}$ by

$$\psi(f) = \frac{f(0) + f(1)}{2} + \int_0^1 t f(t) dt.$$

Determine the measure from the Riesz-Markov-Kakutani theorem corresponding to ψ , i.e. a regular Borel measure μ on [0,1] such that $\psi(f) = \int_{[0,1]} f \, d\mu$ for $f \in C[0,1]$. Calculate $\mu([0,1])$.

P3. In this exercise, we will construct a Haar measure¹ on the *n*-torus $\mathbb{T}^n = \mathbb{R}^n/\mathbb{Z}^n$. For this, recall that one can identify functions $f: \mathbb{T}^n \to \mathbb{C}$ with \mathbb{Z}^n -invariant functions $F: \mathbb{R}^n \to \mathbb{C}$ on \mathbb{R}^n (i.e. we require F(x+m) = F(x) for all $m \in \mathbb{Z}^n$). Furthermore, f is continuous (measurable) if and only if F is continuous (measurable). We define a measure m on \mathbb{T}^n by requiring that

$$\int_{\mathbb{T}^n} f \, \mathrm{d}m = \int_{[0,1]^n} F \, \mathrm{d}m_{\mathbb{R}^n}$$

where $m_{\mathbb{R}^n}$ is the Lebesgue measure on \mathbb{R}^n and f, F are measurable and correspond to each other. Justify that m is well define and show that m is a Haar measure on \mathbb{T}^n .

¹A Haar measure is a Radon measure on a locally compact topological group (G, +) that is left-invariant, meaning that for any Borel set S and $g \in G$, $\mu(g + S) = \mu(S)$.